ON THE TEMPERATURE JUMP IN A RAREFIED
GAS OVER A PERMEABLE SURFACE
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An expression is obtained for the temperature jump in a rarefied gas over a permeable sur-
face on the basis of a numerical solution of the model kinetic equation in the Knudsen layer,

It is known that the expression for the temperature jump in a rarefied gas over an impermeable sur-
face, obtained from the solution of the model kinetic equation in the Knudsen layer, differs from the Maxwell
expression in the replacement of the factor (2—o0)/o by the factor (2—ko)/c, where k = 0,827 [1]:
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In the present work the temperature jump is calculated from the solution of an analogous equation for
a rarefied gas over a permeable wall
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where f is the molecular velocity distribution function
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As in [1], let us assume that the gas density n and temperature T change only slightly in the transi-

tion domain so that they can be considered constant (and equal to n and T, respectively) in the solution of
(2) and only the gradients dn/dx and dT /dx depend on the coordinate x,

Let us represent the distribution function as follows:
f=Fo+Fr (4
where f; is some equilibrium distribution function close to f;, and the correction f; is small compared to f,.
Starting from the above-mentioned assumptions, let us write f; as
o
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Let us assume that the mass flow rate of the gas u in the x direction is considerably less than the
mean velocity of thermal motion v and is constant in the Knudsen layer (u = uy).

(9)

By analogy with [1], substituting (3)-(5) into (2), we reduce the equation to the following:
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Let us assume that the gas molecules reflected from the wall have a Maxwell distribution correspond-
ing to the wall temperature Ty, i.e., the coefficient of accommodation ¢ equals one,

Taking into account that the ratios (m, —ng/n and (Tw—To/T are small, let us write the boundary con-
dition on the wall thus:
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On the basis of (6) and (7) we obtain for f,
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The temperature jump is defined as the difference between the temperature T} (which is a linear ex-
trapolation to the wall of the temperature curve in the domain bounding the layer near the wall) and the wall
temperature Ty,. Hence, we assume henceforth
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Using the mass and energy conservation laws, we find the unknown functions (dn/dx)(x) and (dT/dx) ()
from the expressions governing the mass and heat fluxes in a gas over a permeable wall:

j v fdv = 5 v, frdv= nuy,

(9
1 1 dr — =
S‘? mu, 2 fdv :j - mu, v, dv=—2>A (d_x )w - nmge ) T

The constants (n, —ng/n and (T~ T /T play the part of proper parameters,

Let us introduce the dimensionless variables
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and let us define the functions
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Let us use the new variables
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and the proper parameters
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Substituting (8) into (9) and starting from the fact that

we obtain the following equations
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The system of integral equations (10) can be solved analytically, but we propose to use here a numeri-
cal solution which allows the determination of the temperature jump on a permeable surface to be pursued
by a simpler method,

At the point £ = 0, ¢*, X * take on infinite values. Hence, by analogy with [1], let us select a small
positive number & for which it can be assumed with sufficient accuracy that
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thereby introducing the new parameters
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They can be expressed from (10) by assuming { = 0, For p¥ we find
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Writing ¢* and X* as
Q*=0F + AgF, y*=yF + Axy

and subst1tut1ng the expressions for uf and pf into (10), we obtain a system of equations to determine Aq);
and Axn
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The system (12) was solved by iteration on the Minsk-22 electronic computer for u/ Xe = 0; 1,

The temperature distribution and temperature jump are defined as:
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The temperature T, can be represented as
dr

Ty=T —1 . (14)
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Substituting (14) into (13), we obtain

dr dar
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Let us write (11) as
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From (15) and (16),we find
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where k is a coefficient the value of which is defined by the relationship

0

k:2-—§m{p§~a —}-j‘[x*(r)—l] dr}.

It should be noted that the expression for the temperature jump on a permeable surface has been
derived in a thirteen-moment approximation in [2, 8], It is seen from a comparison of (17) and the results
in these papers that the first member in (17) differs from the analogous terms in [2, 3] by the presence of
a factor 2-k but the members containing the velocity U agree,

In general the coefficient k depends on U/Xy. However, computations have shown that this dependence
is quite weak (for U/X, = 0 k = 0.826, and for U/Xy = 1k = 0.830), and it can be neglected in practice, For
U = 0, k agrees well with the result presented in [1].

The temperature jump can also be represented as
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The difference between k and kepr characterizes the contribution of the term containing the velocity to
the magnitude of the temperature jump,
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NOTATION

is the collision frequency;

is the coordinate along the normal to the wall;

is the velocity of molecule in a fixed coordinate system;

is the mass of molecule;

is the mean free path;

are the specific heats of the gas at constant pressure and constant volume, respectively;

are the gas density and coefficient of heat conduction;

is the gas constant;

are the number of molecules per unit volume and gas temperature at the wall, respectively;
is the number of molecules per unit volume in the stream of molecules reflected at the wall,
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